
by TURNING technologies

2500 SERIES USER'S GUIDE - PART 2

Table of Contents

Data Output Formats 2
Format Definitions 2
Model-to-Format Conversion 4
ASCII Output Formats 8
Binary Output Formats 11
Operating Modes 12
Troubleshooting 13
Tablet Diagnostic Tests 14
Maintenance 20
Changing the Operating Voltage 21
Communication Interface 23
Accessories 24
Specifications 25
Factory Settings 26

by TURNING technologies

Data Output Formats

The output format is the manner in which ASCII or binary characters are transmitted from the tablet to represent the position of the cursor, the operating mode and other information.

There are 32 possible output formats. Four are standard CalComp 9100 series formats, three are standard CalComp 2000 or 2200 series formats and one is a standard CalComp 4000 Wedge series format. These formats are used by many applications software packages. On power-up, the 2500 Tablet will default to the format specified in the soft switch settings.

NOTE: The 2500 Tablet will only respond to CalComp 9100, 2500 and 2000 series digitizer commands. Although it can emulate the data output formats of other manufacturer's tablets, it will not respond to other manufacturer's tablet function commands.

Format Definitions

@

C (or Ca, Cb)

Cn

Comma (,)

Carriage Return (<CR>)> in output format

Decimal Point (.)
"At" sign. In ASCII formats, it is a literal @ symbol (HEX 40) in the output.

Cursor Status Character. In ASCII formats, C represents a single character while multiple characters are expressed as $\boldsymbol{C a}$ and $\boldsymbol{C b}$.

Cursor Status Bit. In Binary formats, the highest number $\boldsymbol{C n}$ is the most significant bit and $\mathbf{C O}$ is the least significant bit.

Comma. In ASCII formats, it is a literal comma (HEX 2C) in the output.

Carriage return. In ASCII formats, a literal carriage return (HEX OD) in the output.

Decimal Point. In ASCII formats, it represents a literal decimal point (HEX 2E) in the output.

Line Feed (<LF>)

LPmm, LPI

by TURNING technologies
Line Feed. In ASCII formats, it represents a literal line feed command (HEX OA) in the output. > in output format

Lines per millimeter; lines per inch.

M

MSB, LSB
Mode Status Character. In ASCII formats, \boldsymbol{M} is a single character representing the current operating mode.

Most significant bit; lease significant bit.

N
Near Proximity. In Binary formats, this bit is set when the transducer is out of proximity.

P
Pen (Cursor) Status. In ASCII formats, a character reading D when the stylus tip or any cursor button is depressed and \boldsymbol{U} when the stylus tip or all cursor buttons are up.

Space (<SP>)> in output data format

Space Character. In ASCII formats, <SP> represents a literal space character command (HEX 20) in the output. Any spaces in the following output format tables not indicated by <SP> are for clarity only and are not part of the tablet output data.

Sx and Sy

T

T0

X or Y

Sign Character or Bit. In ASCII formats, a " + " for positive and a "-" for negative. In binary formats, a $\mathbf{0}$ bit for positive and a 1 bit for negative except for Formats 29 and 30 which use $\mathbf{0}$ for negative and $\mathbf{1}$ for positive.

Tablet Status. In ASCII formats, a single character reading A. Included for CalComp 9100 compatibility.

Tablet Status. If the first character of the tablet status characters is set to anything, but $\boldsymbol{A}, \mathrm{TO}$ will be equal to the lower three bits of that ASCII character in formats $8,15,16$ and 31. T0 will equal the lowest bit in formats 29 and 30.

Data Digit. In ASCII formats, a numeric character representing coordinate data. The number of X or Y

by TURNING technologies
symbols represents the allowable number of digits in any output.

Xn or Yn
Data Bit. In binary formats, a bit representing coordinate data. The highest numbered \boldsymbol{n} is the most significant bit.

Model-to-Format Conversion

MANUFACTURER	MODEL	FORMAT NAME	2500 FORMAT
CalComp	2000	ASCII	0
CalComp	2000	Binary	28
CalComp	2000	ASCII (Special)	2
CalComp	2200	Format 1	0
CalComp	2200	Format 2	1
CalComp	2200	Format 3	28
CalComp	4000	ASCII	1
CalComp	9100	Format 1	4
CalComp	9100	Format 2	5
CalComp	9100	Format 3	6
CalComp	9100	Format 4	7
GTCO	DP5	ASCII	9
GTCO	DP5	Binary Low Resolution	25
GTCO	DP5	Binary High Resolution	23
GTCO	MD7	ASCII	10,11
GTCO	MD7	Binary	28
Hitachi	HDG1111	ASCII	12,14
Hitachi	HDG1111	Binary Low Resolution	28
Hitachi	HDG1111	Binary High Resolution	27
Hitachi	HDG1515	ASCII	12,14
Hitachi	HDG1515	Binary Low Resolution	28
Hitachi	HDG1515	Binary High Resolution	27
Houston	HI Pad	ASCII	13
Instruments			28
Kurta	Series 1	Format 1	24
Kurta	Series 1	Format 2	26
Kurta	Series 1	Format 3	10
Kurta	Series 1	Format 4 ASCII	

Kurta
Kurta
Numonics
Summagraphics

Summagraphics
Summagraphics
Summagraphics
Summagraphics
Summagraphics
Summagraphics
Summagraphics
Summagraphics

Series 2	ASCII	10
Series 2	Binary	24
2200		23
Bit Pad 1	ASCII	0
Bit Pad 1	Binary	28
1103 (Bit Pad 2)	ASCII	0
Bit Pad 2	Binary	28
1105 (Bit Pad 2)	ASCII	$8,15,16$
Bit Pad 2	Binary	31
MM	ASCII	0
MM	Binary (3-byte)	29
MM	Binary (5-byte)	30

Output Formats

FORMAT
0

1

2
3
4

5

6

7

8

9

RESOLUTION

<510 LPI; <21 LPM
>509 LPI; >21 LPM
<510 LPI; <21 LPM >509 LPI; >20 LPM
ALL
RESERVED
<1280 LPI; <51 LPM
>1279 LPI; >50 LPM
<1280 LPI; <51 LPM
>1279 LPI; >50 LPM
<1280 LPI; <51 LPM
>1279 LPI; >50 LPM
1000 LPI
100 LPM
10 LPM
OTHER
1000 LPI
100 LPM
10 LPM
OTHER
<510 LPI, <21 LPM

ASCII OUTPUT

XXXX, YYYY, C CR
XXXXX, YYYYY, C CR
C XXXX YYYY CR
C XXXXX YYYYY CR
@C Sx XXXXX Sy YYYYY CR
RESERVED
T M C XXXXX YYYYY CR
T M C XXXXXX YYYYYY CR
XXXXX, YYYYY, T M C CR
XXXXXX, YYYYYY, T M C CR
C P XXXXX YYYYY CR
C P XXXXXX YYYYYY CR
SP XX.XXX, SP YY.YYY, T M C CR
SP XXXX.XX, SP YYYY.YY, T M C CR
SP XXXX.X, SP YYYY.Y, T M C CR
SP XXXXX., SP YYYYY., T M C CR
Sx XX.XXX, Sy YY.YYY, CbCa, TO CR
Sx XXXX.XX, Sy YYYY.YY, CbCa, TO CR
SX XXXX.X, Sy YYYY.Y, CbCa, TO CR
Sx XXXX., Sy YYYYY., CbCa, T0 CR
C XXXX SP YYYY CR

by TURNING technologies		
	>509 LPI, >20 LPM	C XXXXX SP YYYYY CR
10	<510 LPI, <21 LPM	C XXXX YYYY CR
	>509 LPI, >20 LPM	C XXXXX YYYYY CR
11	<510 LPI, <21 LPM	XXXX YYYY C CR
	>509 LPI, >20 LPM	XXXXX YYYYY C CR
12	<510 LPI, <21 LPM	XXXX, YYYY, C CR
	>509 LPI, >20 LPM	XXXXX, YYYYY, C CR
13	ALL	C SX XXXXX Sy YYYYY CR
14	<510 LPI, <21 LPM	Sx XXXX Sy YYYY C CR
	>509 LPI, >20 LPM	Sx XXXXX Sy YYYYY C CR
15	ALL	SX XXXXX, Sy YYYYY, CbCa, T0 CR
16	ALL	Sx XXXX.XXX, Sy YYYY.YYY, CbCa, T0 CR
17 to 22	RESERVED	

16-Button Cursor Output
ASCII FORMATS

	BUTTON PRESSED	0, 2, 9, 10 AND 11	4, 5, 6 AND 7	12
PEN UP	NONE	0	U	SP
PEN DOWN	0	1	0	0
	1	2	1	1
	2	3	2	2
	3	4	3	3
	4	5	4	4
	5	6	5	5
	6	7	6	6
	7	8	7	7
	8	9	8	8
	9	:	9	9
	A	;	A	*
	B	<	B	\#
	C	=	C	0
	D	>	D	1
	E	?	E	2
	F	@	F	3

by TURNING technologies

	BUTTON	8, 15, 16 IN	8, 15, 16 OUT OF	1 RUN	1 OTHER
	PRESSED	PROX	PROX	MODE	MODES
PEN UP	NONE	00	32	9	8
PEN	0	01	33	1	0
DOWN	1	02	34	3	2
	2	03	35	5	4
	3	04	36	7	6
	4	05	37	1	0
	5	06	38	3	2
	6	07	39	5	4
	7	08	40	7	6
	8	09	41	1	0
	9	10	42	3	2
	A	11	43	5	4
	B	12	44	7	6
	C	13	45	1	0
	D	14	46	3	2
	E	15	47	5	4
	F	16	48	7	6

| | FORMAT 13 | | |
| :--- | :--- | :--- | :--- | :--- |
| BUTTON | LINE TRACK | LINE TRACK | |\quad POINT \quad RUN

by TURNING technologies

4-Button Cursor Output

	ASCII FORMATS		
	BUTTON PRESSED	$\mathbf{0 , 2 , 9 , 1 0}$ AND 11	$\mathbf{1 2}$ AND $\mathbf{1 4}$
PEN UP	NONE	0	SP
PEN DOWN	0	1	1
	1	2	2
	2	4	3
	3	8	4

The following formats duplicate the first four buttons of the 16-button cursor output with the 4-button cursor:
$1,4,5,6,7,8,13,15$ and 16
Binary Formats

	(MSB)	FORMAT 23						(LSB)
BYTE	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
1	1	C 4	C 3	C 2	C 1	C 0	X 15	X 14
2	0	X 13	X 12	X 11	X 10	X 9	X 8	X 7
3	0	X 6	X 5	X 4	X 3	X 2	X 1	X 0
4	0	0	0	0	0	0	Y 15	Y 14
5	0	Y 13	Y 12	Y 11	Y 10	Y 9	Y 8	Y 7
6	0	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0

	by TURNING technologies							
	(M	FORMAT 24						(LSB)
BYTE	B7	B6	B5	B4	B3	B2	B1	B0
1	1	M	C3	C2	C1	C0	X15	X14
2	0	X13	X12	X11	X10	X9	X8	X7
3	0	X6	X5	X4	X3	X2	X1	X0
4	0	0	0	0	0	0	Y15	Y14
5	0	Y13	Y12	Y11	Y10	Y9	Y8	Y7
6	0	Y6	Y5	Y4	Y3	Y2	Y1	YO

	(MSB)	
BYTE	B7	B6
1	0	1
2	0	0
3	0	0
4	0	0
5	0	0

(MSB)
FORMAT 26

	(MSB)		
BYTE	B7	B6	B5
1	1	N	0
2	0	X 6	X 5
3	0	X 13	X 12
4	0	Y 6	Y 5
5	0	Y 13	Y 12

B4	B3
M	C3
X4	X3
X11	X10
Y4	Y3
Y11	Y10

B2
B1
(LSB)

	(MSB)		
BYTE	B7	B6	B5
1	1	C4	C3
2	0	X13	X12
3	0	X6	X5
4	0	0	0
5	0	Y13	Y12
6	0	Y6	Y5

FORMAT 27

B4	B3	B2
C2	C1	C0
X11	X10	X9
X4	X3	X2
0	0	0
Y11	Y10	Y9
Y4	Y3	Y2

(LSB)
B1 B0
X15 X14
X8
X7
$\mathrm{X1} \quad \mathrm{X0}$
Y15 Y14
Y8 Y7
Y1 Y0

(MSB)
by TURNING technologies

BYTE	B7	B6
1	0	1
2	0	0
3	0	0
4	0	0
5	0	0

B5	B4	B3
C3	C2	C1
X5	X4	X3
X11	X10	X9
Y5	Y4	Y3
Y11	Y10	Y9

B2
C0
X 2
X 8
Y 2
Y 8

B1	B0
M	N
X1	X0
X7	X6
Y1	$Y 0$
$Y 7$	$Y 6$

	(MSB)	FORMAT 29						(LSB)
BYTE	$\mathbf{B 7}$	B6	$\mathbf{B 5}$	$\mathbf{B 4}$	$\mathbf{B 3}$	$\mathbf{B 2}$	B1	B0
1	1	N	T 0	SX	Sy	C 2	C 1	C 0
2	0	X 6	X 5	X 4	X 3	X 2	X 1	X 0
3	0	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0

	(MSB)	FORMAT 30						(LSB)
BYTE	B7	B6	B5	B4	B3	B2	B1	B0
1	1	N	T 0	SX	Sy	C 2	C 1	C 0
2	0	X 6	X 5	X 4	X 3	X 2	X 1	X 0
3	0	X 13	X 12	X 11	X 10	X 9	X 8	X 7
4	0	Y 6	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0
5	0	Y 13	Y 12	Y 11	Y 10	Y 9	Y 8	Y 7

Sx and Sy are 0 for negative output and 1 for positive in this format.

	(MSB)	FORMAT 31						(LSB)
BYTE	$\mathbf{B 7}$	$\mathbf{B 6}$	$\mathbf{B 5}$	$\mathbf{B 4}$	$\mathbf{B 3}$	$\mathbf{B 2}$	$\mathbf{B 1}$	B0
1	0	1	0	0	T2	T 1	T0	N
2	0	0	0	C 4	C 3	C 2	C 1	C 0
3	0	0	X 5	X 4	X 3	X 2	X 1	X 0
4	0	0	X 11	X 10	X 9	X 8	X 7	X 6
5	0	0	0	SX	X 15	X 14	X 13	X 12
6	0	0	Y 5	Y 4	Y 3	Y 2	Y 1	Y 0
7	0	0	Y 11	Y 10	Y 9	Y 8	Y 7	Y 6
8	0	0	0	Sy	Y 15	Y 14	Y 13	Y 12

by TURNING technologies
BINARY FORMATS
16-Button Cursor Output

BUTTON	FORMAT	FORMAT	FORMAT	FORMAT
PRESSED	24, 26 AND 28	27 AND 31	29 AND 30	23 AND 25
NONE	0000	00000	000	00000
0	0001	00001	001	10000
1	0010	00010	010	10001
2	0011	00011	011	10010
3	0100	00100	100	10011
4	0101	00101	101	10100
5	0110	00110	110	10101
6	0111	00111	111	10110
7	1000	01000	000	10111
8	1001	01001	001	11000
9	1010	01010	010	11001
A	1011	01011	011	11010
B	1100	01100	100	11011
C	1101	01101	101	11100
D	1110	01110	110	11101
E	1111	01111	111	11110
F	0000	10000	000	11111

4-Button Cursor Output

BUTTON	FORMAT	FORMAT	FORMAT	FORMAT
PRESSED	24, 26 AND 28	27 AND 31	29 AND 30	23 AND 25
NONE	0000	00000	000	00000
0	0001	00001	001	00001
1	0010	00010	010	00010
2	0100	00100	100	00100
3	1000	01000	000	01000

by TURNING technologies

Operating Modes

The operating mode sets the conditions that must be satisfied before the tablet will transmit position to the host. One or more modes may be active concurrently.

Prompt Mode

The host must transmit a prompt character to the tablet before a data point will be output. The default prompt character is "?". Prompting can operate in conjunction with any other mode.

Relative Output Modes

A relative mode does not have a direct relationship between the tablet cursor position and the screen cursor position. The movements of the screen cursor will duplicate the tablet cursors' movement's right, left, up and down, but its exact position on the screen will depend only on where it was when the cursor was activated.

Delta

The data output represents the change in the transducer's position since the last point was output rather than the absolute position of the transducer on the tablet. DELTA may be used in conjunction with Line, Run, Point or Track.

Absolute Output Modes

Absolute modes have a direct relationship between the tablet's active area and the screen display. If the cursor is moved from the lower left to upper right on the tablet, the screen's cursor will move from the lower left of the screen to the upper right.

HALT

LINE

POINT

Tablet continues to accept commands, but no data will be output until a new mode is selected.

Tablet outputs position data continuously while the stylus tip or a cursor button is depressed. One additional point is output when the stylus or button is released.

Tablet outputs one data point each time the stylus tip or cursor button is depressed.

by TURNING technologies

RUN

TRACK

INCREMENT

Tablet outputs data points continuously. This mode is called STREAM by some manufacturers.

Tablet outputs data points continuously while the stylus tip or cursor button is depressed. Unlike LINE, there is no extra point transmitted when the button is released.

Data points are only output if the transducer has been moved for the required increment distance. The increment distance must first be set by the SET INCREMENT command. Increment may be used in conjunction with LINE, RUN or TRACK.

Troubleshooting

Diagnostic Tests

When the tablet is powered on or upon reception of the software reset command, it runs diagnostic self-tests to ensure the tablet is functioning correctly. After these tests, the tablet sounds the utility tone and is ready for operation. If any test fails, the tablet sounds an error tone and the test indicator flashes. The corresponding indicator (\#1-8) of the failed test will also light.

If the tablet fails the self-test, note which indicator is lit, write it down and contact your local GTCO CalComp by Turning Technologies representative or call 1-866-746-3015. A comprehensive description of the self-test and other diagnostic tests for the use of trained electronics technicians is included in this section. You may be asked to perform the tests and report the results to the service department.

No Data

If no data is being received by the host, check the following:

- Is the tablet plugged in to a live receptacle and is its power switch on?
- Switch the power off and then on. Does the tablet pass the self-test?
- Check the fuses.
- Are all connections between the tablet and host tight?
- Tablet to transducer?

by TURNING technologies
- Tablet to RS-232 connection?
- Host to RS-232 connection?
- Is the RS-232 cable plugged into the correct communications port?
- Is the host computer turned on and ready to receive data?
- Is the tablet disabled? Indicators \#7 and \#8 will be lit if the tablet is disabled.
- Is the transducer in proximity?
- Are the soft switches set properly for the software you're using? Recheck the settings.
- Are the transmit and receive data lines configured properly? Check the host and software user's manuals for the right configuration. They can be reversed by setting Bank 5, switch 2.

Garbled Data

If data is transmitted, but garbled:

- Does the data output format of the tablet match the data format expected by the software?
- Are the baud rate, number of data bits, parity bits and stop bits set to match the host's requirements? Does it match the software's requirements? Check the operator's manuals for the host and software.

Tablet Diagnostic Tests

Automatic Self-Tests

At power up or software reset, the tablet runs the ROM CHECKSUM, RAM READ/WRITE, NON-VOLATILE MEMORY CHECKSUM and RS-232 PINOUT tests. If these self-tests are passed, the tablet sounds the utility tone and is ready for operation. If any test fails, the tablet sounds an error tone, the numbered block corresponding to the failed test lights and the TEST indicator light flashes.

Picking either the BANK or TEST blocks will take the tablet out of the failure mode, stopping the flashing indicator. The tablet will attempt to operate normally.

Diagnostic Tests

The diagnostic tests designated as Runtime tests are basic tests which the untrained user can perform. They are the same as the automatic self-tests that the tablet runs on power

by TURNING technologies
up. The Comprehensive tests are more detailed diagnostic tests meant for the use of trained factory or field service engineers.

NOTE: Specifications of the comprehensive tests are subject to change at any time and without notice.

Tests may be run from the soft switch banks or by sending ESC \% _ _ (b) CR commands from the host. The output will only appear on the numbered indicator LEDs if the soft switches are used. The output will appear on both the LEDs and on the RS-232 port if the ESC \% _ _ (b) CR commands are used.

Entering Test Mode

To enter the test mode from the normal operating mode, select the BANK block to first enter BANK SELECT mode. Then pick the numbered block that corresponds with the number of the test you wish to run. Finally, choose the TEST block. The results of the test will be displayed on the numbered indicators.

To run another test, pick BANK again and then the numbered block which corresponds with the next test, then TEST.

To return to normal mode, select the TEST block a second time, after you have seen the results of the selected test.

by TURNING technologies

Soft Switch Assignments in Test State

The tablet uses the following switch assignments for running the tests from the soft switches.

BANK 1: Self-tests and RS-232 pinout indicators

Switch 1: Spare
Switch 2: RS-232 Pinout (Pin 2 voltage indicator)

Switch 3: RS-232 Pinout (Pin 3 voltage indicator)

Switch 4: Non-Volatile Memory Failure

Switch 5: ROM Checksum Failure

Switch 6: RAM Read/Write Failure

by TURNING technologies
Switch 7: Spare

Switch 8 Spare

BANK 2: Model ID

BANK 3: Software ID

BANK 4: Analog to Digital Converter

BANK 5: Input

BANK 6: Grid Test

BANK 7: Checksum
BANK 8: Transducer Data

Test Descriptions

RS-232 PINOUT

NON-VOLATILE MEMORY CHECKSUM

ROM CHECKSUM

RAM READ/WRITE

RUNTIME OR SELF-TESTS

This is NOT a failure indicator. Indicator lights \#2 and \#3 correspond to pins \#2 and \#3 of the RS-232 connector. The indicator lights if -12 V is present on the pin.

All bytes of the non-volatile memory are added and compared to a Checksum. If they are not equal, the test is failed. Each time the memory is altered; a new Checksum is calculated and stored.

The bytes of the ROM are exclusive-ORed. The test fails if the ending value is non-zero.

The RAM is written with a checkerboard pattern, read and compared with write data. The test fails if the two do not match. Data needed by the system is moved so the entire RAM may be checked without destroying its contents.

by TURNING technologies

MODEL ID

SOFTWARE ID

ANALOG TO DIGITAL TEST

INPUT TEST

GRID TEST

TRANSDUCER DATA

COMPREHENSIVE TESTS

The tablet model number (25120 or 25180) is output in consecutive ASCII characters on the numbered LEDs. To view the characters, press a cursor button or the stylus tip for each character. After the last character is displayed, the tablet returns to BANK/SELECT.

The software part number and current revision level are output in ASCII characters as in the MODEL ID test.

Place the transducer on the active area during this test. The differential voltage between the Y -axis wires located by the transducer is output continuously on the LEDs as a binary number between 00 and FF (0 volts to 10 volts).

When a character is received, the tablet beeps and the numbered indicator LEDs form a binary ASCII display of the character. They hold the display until a new character is received. Exit the test by pressing a cursor button or the stylus.

The grid wires are tested as the transducer moves across the tablet. This test requires the user to move the transducer from left to right along the X-axis and then from top to bottom along the Y-axis. The number of the wire being tested is output as a binary number (Y is biased by 80 H) on the indicator LEDs. If the test encounters a bad wire, it stops counting. The last number output is the number of the bad wire. If the tablet passes the test, it beeps and returns to normal.

The checksum output should be zero.

The output is an eight-bit binary number followed by a CR and LF.

b0	Pen/Button Down
b1-b4	Button Code, a four-bit indication of which

Test Commands

The diagnostic tests can also be activated from the host keyboard or user menu overlay with the command:
ESC \% _ _ (b) CR
(b) is one to eight and corresponds to the soft switch test assignment. If a test is not selfterminating, send a character to the tablet to exit. The output is in ASCII or HEX on the display screen and in binary on the tablet LEDs.

NOTE: The tablet will not respond if ESC \% _ is entered from the ASCII portion of the overlay. The blank box in the upper right corner of the menu activates the control sequence $E S C \%$.

ESC \% _ 1 CR SELF-TESTS

ESC \% _ 2 CR MODEL ID

Output is a 2-digit HEX number, corresponding to the binary output of the LEDs followed by a carriage return and line feed.
b0 0
b1 RS-232 pinout indicator (pin 2)
b2 RS-232 pinout indicator (pin 3)
b3 Non-volatile Memory failure
b4 ROM Checksum failure
b5 Ram Read/Write failure
b6 0
b7 0

Tablet model number (25120 or 25180) followed by a carriage return and line feed, will be output to the host in ASCII characters.

ESC \% _ _ 3 CR SOFTWARE ID Software part number and current revision level are output in ASCII characters followed by a carriage return and a line feed.

by TURNING technologies

ESC \% _ 4 CR ANALOG TO DIGITAL TEST

ESC \% _ 5 CR INPUT TEST

ESC \% _ _ 6 CR GRID TEST

ESC\% _ 7 CR CHECKSUM OUTPUT

ESC\% _ 8 CR TRANSDUCER TEST

Test results are output as a 2-digit HEX number between 00 and FF (0 volts to 10 volts).

This test can't be run from the host because the first character of the input simultaneously exits the test.

The number of the wire being tested is output as a twodigit HEX number. The Y-axis is biased by 80 H .

Output is a two-digit HEX number followed by a carriage return and line feed.

Data on the transducer port is output as a 2-digit HEX number followed by a carriage return and line feed. The test continues until a character is sent to the tablet.

Maintenance

Cleaning the Tablet Surface

- Use a clean dry cloth to remove dust or dirt.
- Never apply an abrasive cleanser as it may scratch the surface. Soft cleansers may leave shiny spots on the tablet surface.
- Use only the cleaning materials listed below to clean the tablet surface:
- Denatured alcohol
- Mild soap and water
- Isopropyl alcohol (rubbing alcohol)
- VM\&P naphtha
- Freon

Periodic Maintenance

The 2500 tablet requires no periodic adjustments.

by TURNING technologies

Changing the Operating Voltage

The tablet may be operated at 100-125 Volts AC or at 200-250 Volts AC. If the operating voltage of the table is not the same as the operating voltage in your locale, follow the steps below to change it.

1. Disconnect the tablet from the line cord.

2. Insert a small flat blade screwdriver into the notch at the left of the fuse block cover. Gently pull the left end of the fuse block cover up and remove the fuse holder.

Set aside cover/fuse block assembly for now.
3. Pull the voltage selector card straight out of its housing at the right, using the indicator pin as a handle. (Needle nose pliers are a help here.)
4. Orient the selector card so that the desired voltage label is right side up. Pull the indicator pin down to free it from the detent, turn it $1 / 4$ turn to the right and then slide it up and to the right as far as possible.

Turn the pin another $1 / 4$ turn to make it point up or away from the voltage label and then slide the pin down into the detent at the top of the card.

by TURNING technologies
5. Reinstall the selector card. The printed side of the card must face the power cord connector and the indicator pin must point out.

Changing the Fusing

Tablets operating at $100-125 \mathrm{~V}$ require one slow blow fuse rated at .25 A .
Tablets operating at 200-250V require two slow blow fuses rated at .125 A .

To change the fusing:

1. Loosen the Phillips screw on the fuse block one turn.
2. Remove the fuse block by lifting it free on of the screw, sliding it away from the screw and then lifting up.

Fuse Blocik/Cover Assembly

Invert the fuse block and reinstall it onto the pedestal. Insert the proper fuses into the holders. (Two fuses are required, although a dummy fuse may be used in the neutral lower holder.)

by TURNING technologies
200-250 V Fusing Arrangement

3. Reinstall the cover assembly. The indicator pin should now be visible in the 240 V position.

NOTE: For protection against the risk of fire or electric shock hazard, always replace fuses with the same type and rating of fuse.

Communication Interface

The 2500 tablet is designed for asynchronous serial RS-232C transmission using RS232C/CCITT V. 24 signals. This version supports an eight-wire data and handshaking subset of RS-232C. The tablet is configured to function as Data Terminal Equipment (DTE). DTE assumes transmit on pin 2 and receive on pin 3. The tablet can also emulate a DCE device, which transmits on pin 3 and receives on pin 2. If the host is configured as DTE and uses handshake signals, a null modem should be used between the tablet and host.

PIN NUMBER

1

2(3)
3(2)
4

ASSIGNMENT

Chassis Ground

Transmitted Data
Received Data
Request to Send
Output

by TURNING technologies

5

6

8

9-19

20

21-23

24

25

Clear to Send Input, +12V pull-up

Data Set Ready Input, +12 V pull-up

Signal Ground
Received Line Signal Detect
Input, +12V pull-up

SPARE

Data Terminal Ready
Output

SPARE

Optional Power Input when jumper W3 is installed

Power Ground

Accessories

To order any of the items below, either contact your GTCO CalComp by Turning Technologies distributor or call 1-866-746-3015.

PART NUMBER
TABLETS
25120-01
25120-02
25120-03
25180-01
25180-02
25180-03

CURSOR

25034-01

DESCRIPTION

12" x 12" Tablet, RS-232 DTE w/110V Power Supply 12" x 12" Tablet, RS-232 DTE host powered
12" x 12" Tablet, RS-232 DTE w/220V Power Supply 12" x 18" Tablet, RS-232 DTE w/110V Power Supply 12" x 18" Tablet, RS-232 DTE host powered 12" x 18" Tablet, RS-232 DTE w/220V Power Supply

25035-01
25036-01
STYLUS
25093-01
25094-01
25097-01
MENU
14756-1
USER'S MANUAL
50293-01

Specifications

PHYSICAL
Model 25120
Height

Depth
Width
Weight

Model 25180
Height

Depth
Width
Weight
FUNCTIONAL
Resolution
Accuracy
Jitter
Proximity
Speed
ELECTRICAL
Safety:
Electromagnetic:
by TURNING technologies
4-Button Cursor, Diamond Shape
16-Button Cursor

Stylus w/o Ink
Stylus w/Blue Ink
Stylus w/Red Ink

Menu Overlay

2500 Series User's Manual
$12^{\prime \prime} \times 12^{\prime \prime}(30 \mathrm{~cm} \times 30 \mathrm{~cm})$ active area
Minimum 0.545" (1.4 cm)
Maximum 2.5" (6.4 cm)
16" (41 cm)
15" (38 cm)
$6.2 \mathrm{lbs} .(2.8 \mathrm{~kg})$
$12^{\prime \prime} \times 18^{\prime \prime}(30 \mathrm{~cm} \times 46 \mathrm{~cm})$ active area
Minimum 0.545 " (1.4 cm)
Maximum 2.5" (6.4 cm)
16" (41 cm)
21" (53 cm)
9.4 lbs. (4.3 kg)

Variable, user selectable up to 1280 LPI, 50 LPM
+/- .015 inch (.254 mm) in the active area
+/- . 5 least significant digit
0.75 inch (12.7 mm) +/- .25 inch

Variable, user selectable up to 125 coordinate pairs per second

UL 478 and IEC 380
FCC Class B, International VDE-B

\left.| | by TURNING technologies |
| :--- | :--- |$\right\}$| Operating Temperature | 60° to $105^{\circ} \mathrm{F} ; 15^{\circ}$ to $40^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Storage Temperature | -131° to $167^{\circ} \mathrm{F} ;-55^{\circ}$ to $75^{\circ} \mathrm{C}$ |
| Humidity Range | 0% to 95% non-condensing |
| Operating Altitude | Up to 15,000 feet ASL |
| Storage Altitude | Up to 50,000 feet ASL |

Factory Settings

The 2500 tablet is shipped with the following parameters set in the soft switch banks. These settings will be invoked whenever the RESTORE FACTORY SETTINGS soft switch or menu block is selected.

BAUD RATE	9600
BEEPER	Enabled
COMMANDS	Enabled
CURSOR COMMANDS	Enabled
DATA BITS	7
DATA LINE ASSIGNMENT	DTE (Transmitting on pin 2)
DATA RATE	100 PPS
ECHO	Disabled
FORMAT	0
HANDSHAKE	Enabled
INDICATOR ASSIGNMENT	Tablet Status
LINE FEED	Enabled
MARGIN DATA	Disabled
OPERATING MODE	HALT
OUT-OF-PROXIMITY DATA	Disabled
PARITY	Even
RESOLUTION	200 LPI
STOP BITS	1

by TURNING technologies

Corporate Headquarters

14557 N. $82^{\text {nd }}$ Street
Scottsdale, Arizona 85260
Tel: 1-866-746-3015
Support: 1-866-746-3015
Fax: 480-998-1751
www.gtcocalcomp.com

Support: 1.866.746.3015

2500 SERIES

Copyright© 2014 GTCO CalComp by Turning Technologies, Inc.
2500 Series is a trademark of GTCO CalComp by Turning Technologies, Inc. All other products and company names are the trademarks or registered trademarks of their respective owners.

The information contained in this document is subject to change without notice. GTCO CalComp by Turning Technologies assumes no responsibility for technical, or editorial errors, or omissions that may appear in this document, or for the use of this material. Nor does GTCO CalComp by Turning
Technologies make any commitment to update the information contained in this document. This document contains proprietary information which is protected by copyright. All rights reserved. No part of this document can be photocopied or reproduced in any form without the prior, written consent of GTCO CalComp by Turning Technologies, Inc.

